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Intraclass Correlation

Commonly used correlations such as the Pearson
product moment correlation measure the bivariate
relation between variables of different measurement
classes. These are known as interclass correlations.
By ‘different measurement classes’, we really just
mean variables measuring different things. For exam-
ple, we might look at the relation between attractive-
ness and career success; clearly one of these variables
represents a class of measures of how good looking
a person is, whereas the other represents the class
of measurements of something quite different: how
much someone achieves in their career. However,
there are often cases in which it is interesting to
look at relations between variables within classes of
measurement. In its simplest form, we might com-
pare only two variables. For example, we might be
interested in whether anxiety runs in families, and
we could look at this by measuring anxiety within
pairs of twins (see [1]). In this case, the objects being
measured are twins, and both twins are measured
on some index of anxiety. As such, there is a pair
of variables, which both measure anxiety and are,
therefore, from the same class. In such cases, an intr-
aclass correlation (ICC) is used and is commonly
extended beyond just two variables to look at the
consistency between judges. For example, in gymnas-
tics, ice-skating, diving, and other Olympic sports, the
contestant’s performance is often assessed by a panel
of judges. There might be 10 judges, all of whom
rate performances out of 10; therefore, the resulting
measures are from the same class (they measure the
same thing). The objects being rated are the competi-
tors. This again is a perfect scenario for an intraclass
correlation.

Models of Intraclass Correlations

There are a variety of different intraclass correlations
(see [4] and [5]) and the first step in calculating one is
to determine a model for your sample data. All of the
various forms of the intraclass correlation are based
on estimates of mean variability from a one-way
repeated measures Analysis of Variance (ANOVA).

All situations in which an intraclass correlation is
desirable will involve multiple measures on different
entities (be they twins, Olympic competitors, pictures,

sea slugs etc.). The objects measured constitute a
random factor (see Fixed and Random Effects) in
the design (they are assumed to be random exemplars
of the population of objects). The measures taken
can be included as factors in the design if they have
a meaningful order, or can be excluded if they are
unordered as we shall now see.

One-way Random Effects Model

In the simplest case, we might have only two mea-
sures (refer to our twin study on anxiety). When the
order of these variables is irrelevant (for example,
with our twin study it is arbitrary whether we treat the
data from the first twin as being anxiety measure 1
or anxiety measure 2), the only systematic source of
variation is the random variable representing the dif-
ferent objects. In this case, the only systematic source
of variation is the random variable representing the
different objects. As such, we can use a one-way
ANOVA of the form:

xij = µ + ri + eij , (1)

in which ri is the effect of object i (known as the row
effects), j is the measure being considered, and eij

is an error term (the residual effects). The row and
residual effects are random, independent, and nor-
mally distributed. Because the effect of the measure
is ignored, the resulting intraclass correlation is based
on the overall effect of the objects being measured
(the mean between-object variability MS Rows) and the
mean within-object variability (MS W). Both of these
will be formally defined later.

Two-way Random Effects Model

When the order of measures is important, then
the effect of the measures becomes important also.
The most common case of this is when measures
come from different judges or raters. Hodgins and
Makarchuk [3], for example, show two such uses;
in their study they took multiple measures of the
same class of behavior (gambling) and also measures
from different sources. They measured gambling both
in terms of days spent gambling and money spent
gambling. Clearly these measures generate different
data so it is important to which measure a datum
belongs (it is not arbitrary to which measure a datum



2 Intraclass Correlation

is assigned). This is one scenario in which a two-
way model is used. However, they also took measures
of gambling both from the gambler and a collateral
(e.g., spouse). Again, it is important that we attribute
data to the correct source. So, this is a second
illustration of where a two-way model is useful.
In such situations, the intraclass correlation can be
used to check the consistency or agreement between
measures or raters.

In this situation a two-way model can be used as
follows:

xij = µ + ri + cj + rcij + eij , (2)

where cj is the effect of the measure (i.e., the effect
of different raters, or different measures), and rcij is
the interaction between the measures taken and the
objects being measured. The effect of the measure
(cj ) can be treated as either a fixed effect or a random
effect. How it is treated does not affect the calculation
of the intraclass correlation, but it does affect the
interpretation (as we shall see). It is also possible to
exclude the interaction term and use the model:

xij = µ + ri + cj + eij . (3)

We shall now turn our attention to calculating the
sources of variance needed to calculate the intraclass
correlation.

Sources of Variance: An Example

Field [2] uses an example relating to student concerns
about the consistency of marking between lecturers. It
is common that lecturers obtain reputations for being
‘hard’ or ‘light’ markers, which can lead students to
believe that their marks are not based solely on the

intrinsic merit of the work, but can be influenced by
who marked the work. To test this, we could calculate
an intraclass correlation. First, we could submit the
same eight essays to four different lecturers and
record the mark they gave each essay. Table 1 shows
the data, and you should note that it looks the same as
a one-way repeated measures ANOVA in which the
four lecturers represent four levels of an ‘independent
variable’, and the outcome or dependent variable is
the mark given (in fact, these data are used as an
example of a one-way repeated measures ANOVA).

Three different sources of variance are needed to
calculate an intraclass correlation. These sources of
variance are the same as those calculated in one-way
repeated measures ANOVA (see [2] for the identical
set of calculations!).

The Between-object Variance (MS Rows)

The first source of variance is the variance between
the objects being rated (in this case the between-
essay variance). Essays will naturally vary in their
quality for all sorts of reasons (the natural ability of
the author, the time spent writing the essay, etc.). This
variance is calculated by looking at the average mark
for each essay and seeing how much it deviates from
the average mark for all essays. These deviations are
squared because some will be positive and others
negative, and so would cancel out when summed.
The squared errors for each essay are weighted by
the number of values that contribute to the mean (in
this case, the number of different markers, k). So, in
general terms we write this as:

SS Rows =
n∑

i=1

ki(X̄Row i − X̄all rows)
2. (4)

Table 1 Marks on eight essays by four lecturers

Essay Dr Field Dr Smith Dr Scrote Dr Death Mean S2 S2(k − 1)

1 62 58 63 64 61.75 6.92 20.75
2 63 60 68 65 64.00 11.33 34.00
3 65 61 72 65 65.75 20.92 62.75
4 68 64 58 61 62.75 18.25 54.75
5 69 65 54 59 61.75 43.58 130.75
6 71 67 65 50 63.25 84.25 252.75
7 78 66 67 50 65.25 132.92 398.75
8 75 73 75 45 67.00 216.00 648.00
Mean: 68.88 64.25 65.25 57.38 63.94 Total: 1602.50
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Or, for our example we could write it as:

SS Essays =
n∑

i=1

ki(X̄Essay i − X̄all essays)
2. (5)

This would give us:

SS Rows = 4(61.75 − 63.94)2 + 4(64.00 − 63.94)2

+ 4(65.75 − 63.94)2 + 4(62.75 − 63.94)2

+ 4(61.75 − 63.94)2

+ 4(63.25 − 63.94)2 + 4(65.25 − 63.94)2

+ 4(67.00 − 63.94)2

= 19.18 + 0.014 + 13.10 + 5.66

+ 19.18 + 1.90 + 6.86 + 37.45

= 103.34. (6)

This sum of squares is based on the total vari-
ability and so its size depends on how many objects
(essays in this case) have been rated. Therefore, we
convert this total to an average known as the mean
squared error (MS ) by dividing by the number of
essays (or in general terms the number of rows) minus
1. This value is known as the degrees of freedom.

MS Rows = SS Rows

dfRows
= 103.34

n − 1
= 103.34

7
= 14.76.

(7)

The mean squared error for the rows in Table 1
is our estimate of the natural variability between the
objects being rated.

The Within-judge Variability (MS W)

The second variability in which we are interested is
the variability within measures/judges. To calculate
this, we look at the deviation of each judge from the
average of all judges on a particular essay. We use
an equation with the same structure as before, but for
each essay separately:

SS Essay =
p∑

k=1

(X̄Column k − X̄all columns)
2. (8)

For essay 1, for example, this would be:

SS Essay = (62 − 61.75)2 + (58 − 61.75)2

+ (63 − 61.75)2 + (64 − 61.75)2 = 20.75.

(9)

The degrees of freedom for this calculation is
again one less than the number of scores used in
the calculation. In other words, it is the number of
judges, k, minus 1.

We calculate this for each of the essays in turn and
then add these values up to get the total variability
within judges. An alternative way to do this is to
use the variance within each essay. The equation
mentioned above is equivalent to the variance for
each essay multiplied by the number of values on
which that variance is based (in this case the number
of Judges, k) minus 1. As such we get:

SS W = s2
essay1(k1 − 1) + s2

essay2(k2 − 1)

+ s2
essay3(k3 − 1) + · · · + s2

essayn(kn − 1).

(10)

Table 1 shows the values for each essay in the last
column. When we sum these values we get 1602.50.
As before, this value is a total and so depends on the
number essays (and the number of judges). Therefore,
we convert it to an average by dividing by the degrees
of freedom. For each essay, we calculated a sum of
squares that we saw was based on k − 1 degrees
of freedom. Therefore, the degrees of freedom for
the total within-judge variability are the sum of the
degrees of freedom for each essay dfW = n(k − 1),
where n is the number of essays and k is the number
of judges. In this case, it will be 8(4 − 1) = 24.

The resulting mean squared error is, therefore:

MS W = SSW

dfW
= 1602.50

n(k − 1)
= 1602.50

24
= 66.77.

(11)

The Between-judge Variability (MS Columns)

The within-judge or within-measure variability is
made up of two components. The first is the vari-
ability created by differences between judges. The
second is the unexplained variability (error for want
of a better word). The variability between judges is
again calculated using a variant of the same equa-
tion that we have used all along, only this time we
are interested in the deviation of each judge’s mean
from the mean of all judges:

SS Columns =
p∑

k=1

ni(X̄Column i − X̄all columns)
2 (12)
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or

SSJudges =
p∑

k=1

ni(X̄Judge i − X̄all Judges)
2, (13)

where n is the number of things that each judge rated.
For our data we would get:

SSColumns = 8(68.88 − 63.94)2 + 8(64.25 − 63.94)2

+ 8(65.25 − 63.94)2 + 8(57.38 − 63.94)2

= 554. (14)

The degrees of freedom for this effect are the
number of judges, k, minus 1. As before, the sum
of squares is converted to a mean squared error by
dividing by the degrees of freedom:

MS Columns = SSColumns

dfColumns
= 554

k − 1
= 554

3
= 184.67.

(15)

The Error Variability (MS E)

The final variability is the variability that cannot
be explained by known factors such as variability
between essays or judges/measures. This can be
easily calculated using subtraction because we know
that the within-judges variability is made up of the
between-judges variability and this error:

SSW = SSColumns + SSE

SSE = SSW − SSColumns. (16)

The same is true of the degrees of freedom:

dfW = dfColumns + dfE

dfE = dfW − dfColumns. (17)

So, for these data we obtain:

SSE = SSW − SSColumns

= 1602.50 − 554

= 1048.50 (18)

and

dfE = dfW − dfColumns

= 24 − 3

= 21. (19)

The average error variance is obtained in the usual
way:

MS E = SSE

dfE
= 1048.50

21
= 49.93. (20)

Calculating Intraclass Correlations

Having computed the necessary variance compo-
nents, we shall now look at how the ICC is calculated.
Before we do so, however, there are two important
decisions to be made.

Single Measures or Average Measures?

So far we have talked about situations in which
the measures we have used produce single values.
However, it is possible that we might have measures
that produce an average score. For example, we might
get judges to rate paintings in a competition on the
basis of style, content, originality, and technical skill.
For each judge, their ratings are averaged. The end
result is still the ratings from a set of judges, but these
ratings are an average of many ratings. Intraclass
correlations can be computed for such data, but the
computation is somewhat different.

Consistency or Agreement?

The next decision involves whether we want a mea-
sure of overall consistency between measures/judges.
The best way to explain this distinction is to return
to our example of lecturers and essay marking. It
is possible that particular lecturers are harsh (or
lenient) in their ratings. A consistency definition
views these differences as an irrelevant source of vari-
ance. As such the between-judge variability described
above (MS Columns) is ignored in the calculation (see
Table 2). In ignoring this source of variance, we are
getting a measure of whether judges agree about the
relative merits of the essays without worrying about
whether the judges anchor their marks around the
same point. So, if all the judges agree that essay 1 is
the best and essay 5 is the worst (or their rank order
of essays is roughly the same), then agreement will
be high: it does not matter that Dr. Field’s marks are
all 10% higher than Dr. Death’s. This is a consistency
definition of agreement.
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Table 2 Intraclass correlation (ICC) equations and calculations

Model Interpretation Equation ICC for example data

ICC for Single Scores

One-way Absolute
agreement

MS R − MS W

MS R + (k − 1)MS W

14.76 − 66.77

14.76 + (4 − 1)66.77
= −0.24

Two-way Consistency
MS R − MS E

MS R + (k − 1)MS E

14.76 − 49.93

14.76 + (4 − 1)49.93
= −0.21

Absolute
agreement

MS R − MS E

MS R + (k − 1)MS E + k

n
(MS C − MS E)

14.76 − 49.93

14.76 + (4 − 1)49.93 + 4

8
(184.67 − 49.93)

= −0.15

ICC for Average Scores

One-way Absolute
agreement

MS R − MS W

MS R

14.76 − 66.77

14.76
= −3.52

Two-way Consistency
MS R − MS E

MS R

14.76 − 49.93

14.76
= −2.38

Absolute
agreement

MS R − MS E

MS R + (MS C − MS E/n)

14.76 − 49.93

14.76 + (184.67 − 49.93/8)
= −1.11

The alternative is to treat relative differences
between judges as an important source of disagree-
ment. That is, the between-judge variability described
above (MS Columns) is treated as an important source
of variation and is included in the calculation (see
Table 2). In this scenario, disagreements between the
relative magnitude of judge’s ratings matters (so, the
fact that Dr Death’s marks differ from Dr Field’s
will matter even if their rank order of marks is in
agreement). This is an absolute agreement definition.
By definition, the one-way model ignores the effect
of the measures and so can have only this kind of
interpretation.

Equations for ICCs

Table 2 shows the equations for calculating ICC on
the basis of whether a one-way or two-way model
is assumed and whether a consistency or absolute
agreement definition is preferred. For illustrative
purposes, the ICC is calculated in each case for the
example used in this article. This should enable the
reader to identify how to calculate the various sources
of variance. In this table, MS Columns is abbreviated to
MS C, and MS Rows is abbreviated to MS R.

Significance Testing

The calculated intraclass correlation can be tested
against a value under the null hypothesis using a

standard F test (see Analysis of Variance). McGraw
and Wong [4] describe these tests for the various
intraclass correlations we have discussed; Table 3
summarizes their work. In this table, ICC is the
observed intraclass correlation whereas ρ0 is the
value of the intraclass correlation under the null
hypothesis. That is, it is the value against which we
wish to compare the observed intraclass correlation.
So, replace this value with 0 to test the hypothesis
that the observed ICC is greater than zero, but
replace it with other values such as 0.1, 0.3, or
0.5 to test that the observed ICC is greater than
known values of small, medium, and large-effect
sizes respectively.

Fixed versus Random Effects

I mentioned earlier that the effect of the mea-
sure/judges can be conceptualized as a fixed or ran-
dom effect. Although it makes no difference to the
calculation, it does affect the interpretation. Essen-
tially, this variable should be regarded as random
when the judges or measures represent a sample
of a larger population of measures or judges that
could have been used. In other words, the partic-
ular judges or measures chosen are not important
and do not change the research question that is
being addressed. However, the effect of measures
should be treated as fixed when changing one of
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Table 3 Significance test for intraclass correlations (Adapted from McGraw, K.O. & Wong, S.P. (1996). Forming
inferences about some intraclass correlation coefficients, Psychological Methods 1(1), 30–46.)

Model Interpretation F-ratio Df 1 Df 2

ICC for Single Scores

One-way Absolute
agreement

MS R

MS W
× 1 − ρ0

1 + (k − 1)ρ0
n − 1 n(k − 1)

Two-way Consistency
MS R

MS E
× 1 − ρ0

1 + (k − 1)ρ0
n − 1 (n − 1)(k − 1)

Absolute
agreement

MS R

aMS C + bMS E

In which;

a = kρ0

n(1 − ρ0)

b = 1 + kρ0(n − 1)

n(1 − ρ0)

n − 1
(aMS C + bMS E)2

(aMS C)2

k − 1
+ (bMS E)2

(n − 1)(k − 1)

ICC for Average Scores

One-way Absolute
agreement

1 − ρ0

1 − ICC
n − 1 n(k − 1)

Two-way Consistency
1 − ρ0

1 − ICC
n − 1 (n − 1)(k − 1)

Absolute
agreement

MS R

cMS C + dMS E

In which;

c = ρ0

n(1 − ρ0)

b = 1 + ρ0(n − 1)

n(1 − ρ0)

n − 1
(cMS C + dMS E)2

(cMS C)2

k − 1
+ (dMS E)2

(n − 1)(k − 1)

the judges or measures would significantly affect the
research question (see Fixed and Random Effects).
For example, in the gambling study mentioned ear-
lier it would make a difference if the ratings of the
gambler were replaced: the fact the gamblers gave
ratings was intrinsic to the research question being
addressed (i.e., do gamblers give accurate informa-
tion about their gambling?). However, in our example
of lecturers’ marks, it should not make any differ-
ence if we substitute one lecturer with a different
one: we can still answer the same research ques-
tion (i.e., do lecturers, in general, give inconsis-
tent marks?). In terms of interpretation, when the
effect of the measures is a random factor then the

results can be generalized beyond the sample; how-
ever, when they are a fixed effect, any conclusions
apply only to the sample on which the ICC is based
(see [4]).
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